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Abstract— The detection of Hardware Trojans is crucial for
ensuring trust in the semiconductor IC supply chain. However,
existing detection methods that rely on side-channel analysis
often require golden chips for verification. This paper presents
a new approach to Hardware Trojan detection that utilizes
unsupervised machine learning with side-channel analysis to
eliminate the need for golden data. Trojans of varying sizes
were implemented on an FPGA to evaluate the method to
perform unsupervised clustering and detect anomalies. The
proposed model achieved high accuracy, 93%, and improved
the detection of small and short-triggered Trojans compared to
competing approaches. The unsupervised learning techniques
demonstrated a better false positive rate and similar accuracy
to supervised approaches such as the KNN classifier, SVM,
and Gaussian classifier which require golden data for training.
This research contributes a new approach to Hardware Trojan
detection that can improve the trustworthiness of semiconductor
IC supply chains.
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I. INTRODUCTION

Identifying and preventing hardware Trojans in integrated
circuits (ICs) have advanced rapidly to ensure reliability
and security in the design, manufacturing, and validation
phases. However, when outsourcing IC production to un-
trusted facilities, there is a concern about potential malicious
modifications that could lead to functional failures, data
breaches, or other reliability issues [1]. Invasive methods like
reverse engineering (RE) based hardware Trojan detection
are dependable but not practical for a wide range of ICs
due to the significant time and cost involved. Non-destructive
techniques, such as side-channel analysis (SCA), are faster
but susceptible to manufacturing process variations, making
distinguishing between process-induced variations and hard-
ware Trojans challenging [2]. Recent SCA research has fo-
cused on addressing variability-related concerns, and super-
vised machine learning has been implemented to improve the
technique by identifying the boundary that separates Trojan-
free and Trojan-infected chips. However, the requirement for
multiple golden-ICs from various trusted ICs in SCA-based
detection remains a significant drawback for the supervised
learning-based machine learning method [3], [4].

Side-channel analysis (SCA) techniques for detecting
hardware Trojans have traditionally required the use of
golden ICs, which are expensive and difficult to obtain. Self-
referencing methods have been proposed to overcome this
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limitation, using side-channel data from the same component
at a different time or from different identical locations.
However, these methods have their own limitations, such as
requiring at least one Trojan-free location and being unable
to detect combinational Trojans. Recently, machine learning
techniques have been applied to SCA to propose golden-IC-
free detection methods. For instance, a supervised learning-
based method was proposed in [5] to detect anomalies in
supply current resulting from Trojan attacks through simula-
tion modeling. However, its effectiveness for classifying data
from fabricated chips is unknown. Alternatively, the human
temporal memory (HTM) based machine-learning model
has been proposed that uses self-referencing and eliminates
the need for the golden chip [6]. Unsupervised clustering
methods have also been proposed that eliminate the need
for a golden chip for SCA but perform reverse engineering
(RE) of a few ICs if an anomaly is detected. In [3], ICs are
divided into clusters based on their power signatures, and ICs
with and without Trojans are likely to form different clusters.
Similarly, [7] explored this approach using quantum diamond
microscope magnetic field images. Both techniques suggest
full RE of only a few ICs, which reduces the time, cost, and
expertise required compared to traditional golden-chip-based
approaches.

The need for effective and efficient hardware Trojan de-
tection methods has become increasingly pressing in recent
years. In this work, a novel method is introduced for hard-
ware Trojan detection that combines the power of on-chip
sensors and unsupervised machine learning. Our proposed
method involves introducing a network of ring oscillators
(RO) across the integrated circuit (IC) during the design
stage. Once the IC is fabricated, RO data of all suspect ICs
are analyzed through unsupervised clustering, allowing for
the detection of any Trojans present in the system.

The research presented in this paper makes a valuable
contribution to the field of hardware Trojan detection. By
eliminating the need for destructive reverse engineering or a
set of golden chips, the proposed method saves significant
time and resources and makes the detection process more
accessible to a broader range of stakeholders. In addition,
the unsupervised nature of the approach removes the need
for labeled data for training the model, which has been a
significant challenge for many prior works. The evaluation
of the framework on experimental RO data from 32 test
chips demonstrates its effectiveness in detecting the presence
of Trojans in ICs. The promising results achieved by the
proposed method suggest that it has the potential to become
a widely adopted approach for detecting hardware Trojans,
significantly impacting the field of hardware security.

The rest of this document follows a particular organiza-
tional scheme. Section II gives an overview of prior works,
the threat model, and essential background information. In
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Fig. 1: Hardware trojan leaks sensitive data through the
leakage

Section III, we present our Trojan detection methodology
that involves an unsupervised clustering approach. Moving
on to Section IV, we demonstrate our experiments and results,
including a comparison with the previous approach that relied
on supervised learning. Lastly, in Section V, we bring our
work to a conclusion by discussing its contributions and
potential future directions.

II. BACKGROUND

A. Hardware Trojan

Hardware Trojans are a growing concern in the semi-
conductor industry due to their ability to modify circuitry,
potentially leading to severe consequences maliciously. Hard-
ware Trojans can be identified by their malicious intent and
ability to go undetected by conventional functional verifica-
tion and test procedures. A commonly recognized hardware
Trojan model consists of the payload and the trigger, which
are considered as main components. The trigger initiates the
Trojan in response to an internal circuit state or input, while
the payload affects the circuit’s behavior after the Trojan is
triggered [8], as shown in Fig. 1. One can classify hardware
Trojans by their activation mechanisms, physical properties,
and payload properties.

B. Threat Model

This study assumes that the foundry cannot be trusted,
meaning that an adversary could potentially access the IC
mask layout files and perform malicious modifications. We
limit our focus to hardware Trojans that involve adding or re-
moving logic, excluding doping-level Trojans, analog circuit-
based Trojans, and other non-digital attacks [9]. By making
these assumptions, we can focus our efforts on developing
detection techniques specifically designed to identify digital
hardware Trojans inserted during the manufacturing process.

C. Unsupervised Machine Learning

Machine learning algorithms, whether supervised or un-
supervised, are important because they enable machines to
learn from data and make predictions or decisions without
being explicitly programmed [10] [11]. Unsupervised ma-
chine learning algorithms, like BIRCH, can efficiently cluster
large datasets without prior knowledge or labeling of the data
[12]. This is particularly useful in applications where data
is complex, and its structure is not easily understood. The
algorithm consists of four phases, starting with constructing
the Clustering Feature (CF) tree, followed by clustering of
non-leaf nodes recursively, clustering of leaf nodes using
a standard clustering algorithm, and finally, assigning data
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Fig. 2: Schematic of ring oscillator array

points to clusters based on the nearest cluster distance
metric. The CF Tree data structure reduces computational
complexity and is suitable for clustering continuous and
discrete attribute data.

D. Related Works

In the realm of hardware security, two fundamental tech-
niques for discovering Trojans embedded in the manufactur-
ing process are logic testing and SCA. Logic testing requires
the complete activation of Trojans, which poses a challenge
in creating test vectors capable of identifying every Trojan.
Additionally, it fails to discover Trojans that cause side-
channel leakage, as it only detects Trojans that influence the
Integrated Circuit’s operation [13]. On the other hand, SCA
utilizes physical characteristics like transient current, leakage
current, delay, energy, heat generation, or EM radiation to
uncover the Trojan horse [14]. Unlike logic testing, SCA-
based methods do not require the Trojan to be completely
activated for detection. However, process and environmental
variations can impact conventional SCA techniques’ efficacy,
making them less reliable [15].

Most SCA-based methods require a set of Trojan-free
or golden Integrated Circuits (ICs) to recover the reference
side channel signature. However, new SCA procedures that
are free of golden-chip dependencies have been introduced
by utilizing the suspicious devices’ EM and light emission
properties [16], [17]. The research uses laser probing to
detect hardware Trojans by analyzing the reflected light of
a circuit to detect any variations in behavior [16]. Similarly,
the On-Chip EM Sensors technique involves monitoring the
electromagnetic radiation emitted by the circuit and analyz-
ing any deviations from the expected behavior [17]. Both
techniques have been shown to detect previously undetected
Trojans with high accuracy on several benchmarks. However,
further research is needed to assess their practicality and
scalability in real-world applications.

To replace the requirement for golden integrated cir-
cuits, researchers have also looked into machine learning
approaches. For example, some studies have proposed super-
vised learning-based detection using supply current where
the training data has been procured through simulation.
However, these techniques are yet to be tested on Trojan-
infected supply current from fabricated chips [5].

III. METHODOLOGY

A. Test Chip and Hardware Trojan Design

In order to evaluate RON structure and hardware Trojan
designs, the 32 test chips were fabricated using IBM 90nm
technology. The test chips featured the RON architecture
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Fig. 3: A hardware Trojan design stage Ti

inserted into the ISCAS s9234 benchmark design, with 8-
ring oscillator stages (ROs) and additional circuit compo-
nents. Each chip contained seven hardware Trojan designs
that could be deactivated, allowing for extensive testing
and isolation of process variations from Trojan-inserted RO
characteristic frequencies [18]. Figure 3 illustrates the gate-
level representation of a Trojan stage.

B. Data Collection and Preparation

In this study, the data preparation process was crucial
for achieving reliable unsupervised clustering results. Data
for each chip included ”golden” or Trojan-free samples and
samples with Trojans, labeled only for evaluation purposes.
Preprocessing steps removed irrelevant/redundant features,
normalized feature values, and checked for missing val-
ues/outliers using imputation and interquartile range. These
steps created a suitable dataset for feature extraction and
clustering analysis, described in more detail in the following
section.

C. Feature Extraction

In this study, PCA was used for the feature extraction
process as a dimensionality reduction technique to extract
informative features from the preprocessed data. The two
components that explained the maximum variance in the data
were identified through exploratory data analysis. The opti-
mal number of PCA components was selected by choosing
the two components that explained 80% of the total variance
in the dataset.

The effectiveness of the PCA components was evaluated
by visualizing the data in a reduced feature space using a 2D
scatter plot. The scatter plot showed clear clusters of Trojan-
free and Trojan-infected samples, indicating the effectiveness
of the PCA components in extracting informative features for
clustering analysis.

The use of PCA for feature extraction allowed for a
reduction in the dimensionality of the feature space while
preserving the most relevant information. Two PCA com-
ponents were identified as optimal for the analysis, and
they were effective in distinguishing between Trojan-free and
Trojan-infected samples.

D. Clustering Model

The preprocessed and feature-extracted data, which con-
sisted of both trojan-infected and trojan-free samples, were
clustered using the BIRCH algorithm.

The BIRCH algorithm has two tuning parameters: the
branching factor and the threshold, which were optimized
to ensure the accurate detection of hardware trojans. The
branching factor sets the maximum number of subclusters
that can be combined into a larger cluster, while the threshold
sets the maximum distance between a data point and its
assigned subcluster centroid. These parameters were opti-
mized using a validation set or cross-validation. The BIRCH
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Fig. 4: Architecture of the BIRCH clustering model for
hardware trojan detection

algorithm defines the distance between a data point and a
subcluster centroid using the equation 1.

di,j =

√√√√ p∑
k=1

(xi,k − xj,k)2 (1)

where data points are given as j and i, p is the count
of features, and xi,k and xj,k are the kth feature values for
data points i and j, respectively. This approach enabled us to
detect the subtle differences between trojan and non-trojan
cases, leading to accurate clustering and classification.

The clustering model was applied to the preprocessed
and feature-extracted data, resulting in different clustering
outcomes. The clustering model enabled us to distinguish
between trojan and non-trojan cases, contributing to the
development of a more reliable and effective approach for
hardware trojan detection without the need for golden data.

E. Model Training and Evaluation

The clustering model was trained using the preprocessed
data and evaluated using the labeled data. The evaluation
metrics used for the models were the AUC value, F1-
score, accuracy, G-mean, FNR, precision, FPR, and Recall.
We repeated the model training and evaluation process for
different sample sizes, including 6 samples, 12 samples, and
24 samples.

IV. EXPERIMENTS AND RESULTS

A. Ring Oscillator Network Architecture

The ring oscillator network (RON) architecture was used
in the studies in this paper to find Trojans in integrated
circuits. Eight FPGA boards, notably the Nexys4 DDR
development board, were used in the research. Each FPGA
board was separated into four distinct areas, each of which
was treated as a separate IC and Trojan in order to increase
the sample size. While using different Trojan benchmarks
from Trusthub, combinations and sequential Trojans were
randomly distributed in one section of each integrated circuit
(IC). To prevent one part or individual IC from interfering
with another, the RON architecture was only deployed one
piece at a time. Eight 41-stage ROs were found in each part
of the IC. The average RO frequency was measured for 50
measurements with and without Trojans at room temperature
and nominal operating voltage to eliminate measurement
noise. Fig. 2 shows the schematic of the RO array. For
the RON architecture-based hardware Trojan detection in
integrated circuits, this experimental design ensured accurate
and trustworthy results.
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Fig. 5: Scatter plot depicting the distribution of clusters for
a sample size of 6

The IC is mounted on a prototyping board and connected
to a Xilinx Spartan-6 FPGA on a Nexys 4 board via a
high-density serial connector. The FPGA controls the test
sequence and transmits IC outputs to a computer using a
USB-UART module. The setup includes voltage conversion
and a voltage divider to supply the IC with 1.875V and
the core with 0.9V. The FPGA’s state machine manages the
data collection process, including selecting counter outputs
and transmitting them as hex digits. Each IC undergoes 10
trials with a 500-clock cycle duration. The ICs contain pre-
inserted hardware Trojan designs, but during data collection,
the Trojans are disabled for some samples [18].

B. Cluster Size selection

Our machine learning experiment employs the ”adjust
branching factor and threshold values” strategy to determine
the ideal number of clusters that control the granularity of the
clustering and can be used to obtain the optimized number
of clusters. The branching factor determines the maximum
number of subclusters in each node, while the threshold
determines the radius of the subcluster. By setting these
parameters appropriately, the size and number of the result-
ing clusters are controlled. We experimented with different
parameter values and evaluated the resulting clusters using
silhouette score, which measures the quality of the clustering,
to select the best clustering solution.

C. Cross-Validation Approach

In machine learning and data analysis, cross-validation is
a frequently used technique to increase the accuracy and
generalizability of the model. This method involves dividing
the dataset into subsets, with one subset reserved for testing
and the others used for training. In BIRCH clustering, the
dataset is divided into several folds for cross-validation.
The validation set for each fold is used only once, with
the remaining folds being used for training. The method is
executed numerous times, with the validation set changing
for each run. Performance metrics such as mean squared
error are used to evaluate the algorithm, and optimal tuning
parameter values are chosen based on the best performance.

D. Results

BIRCH clustering not only demonstrated high accuracy
and runtime efficiency in clustering the dataset, but it also
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Fig. 6: ROC curve plot for 6 sample size with BIRCH
clustering

produced informative visualizations for a better understand-
ing of the clustering results. The scatter plot presented in
Fig. 5 illustrates how the data points are distributed among
the clusters formed using the BIRCH clustering algorithm
for a sample size of 6. It is apparent from the plot that the
clusters are distinctly separated.

TABLE I: Table showing BIRCH Clustering Results

Metric Sample Size
6 12 24

FNR 0.086 0.082 0.07
TNR 0.9 0.95 0.95
TPR 0.913 0.917 0.928
FPR 0.09 0.045 0.04

Accuracy 0.913 0.92 0.93
F1 Score 0.951 0.955 0.96

AUC 0.95 0.95 0.96

In our experiments, the algorithm was able to cluster the
dataset accurately with a clustering accuracy of 92.5% with
the default configuration. Increasing the branching factor
parameter to a value of 100, we observed a marginal increase
in accuracy to 93.1%. However, this came at the cost
of an increased runtime. Further increasing the branching
factor resulted in a significant increase in runtime with no
improvement in accuracy. Additionally, we observed that the
BIRCH clustering algorithm was able to scale well with large
datasets. Even with a dataset size of a small number of
samples, the algorithm was able to cluster the data within
a reasonable amount of time. Overall, BIRCH clustering
showed great potential as a fast and accurate clustering
algorithm for large datasets. Additionally, as shown in Fig.
6 curve, a receiver operating characteristic (ROC) curve was
produced to assess the clustering performance and the trade-
off between the rate of true positives and the rate of false
positives. Strong clustering performance was demonstrated
by ROC curve, which had a high area under the curve value
called AUC of 0.95.

In this study, we compared the performance of clustering
technique to several ensemble models of different supervised
methods including Naive Bayes (NB), Support Vector Ma-
chine (SVM), and K-nearest neighbors (KNN) classifiers.
The goal was to evaluate whether clustering technique can
perform well without relying on training labels.

The results of our experiments are summarized in the Table
II. It shows the accuracy and G-mean for each model across
three sample sizes: 6, 12, and 24.



TABLE II: Comparison of clustering techniques and prior
supervised models performance

Model
Accuracy G-mean

Sample Size Sample Size
6 12 24 6 12 24

BIRCH Cluster 0.913 0.92 0.93 0.906 0.933 0.94
Ensemble -
SVM + KNN
+ NB [19]

0.922 0.92 0.94 0.85 0.86 0.926

Ensemble –
SVM + NB [19] 0.88 0.879 0.88 0.90 0.91 0.933

Ensemble –
KNN + NB [19] 0.886 0.883 0.873 0.92 0.93 0.92

As shown in Table II, the clustering technique generally
outperformed the ensemble models in terms of accuracy and
G-mean across all sample sizes. BIRCH Clustering achieved
an accuracy of 0.913, 0.92, and 0.93 for the three sample
sizes, respectively. In contrast, the ensemble model of SVM,
NB, and KNN classifiers achieved an accuracy of 0.922, 0.92,
and 0.94 for the largest sample size of 24. The G-mean for
this ensemble model was 0.926 for the largest sample size.

Overall, the results suggest that clustering techniques can
be effective in solving classification problems, particularly
in cases where training labels may be limited or difficult to
obtain.

V. CONCLUSION

The research work presented in this paper demonstrates
the effectiveness of unsupervised machine learning with
side-channel analysis for Hardware Trojan detection. Our
proposed approach has the potential to enhance the trustwor-
thiness of semiconductor ICs and improve the confidence of
end-users in the authenticity and security of the devices they
use. However, there are potential future directions for this
research. For example, further studies can be conducted to
investigate the robustness of the proposed approach against
attacks, such as adversarial examples. Additionally, the pro-
posed approach can be extended to multi-chip systems to
improve the security of the entire system.

In conclusion, our research presents a new approach to
Hardware Trojan detection that utilizes unsupervised ma-
chine learning with side-channel analysis. The proposed
method achieved high accuracy and outperformed competing
approaches in detecting small and short-triggered Trojans.
The results suggest that clustering techniques can effectively
solve classification problems, and this finding has implica-
tions for other applications where training data may be scarce
or expensive to collect. Overall, our proposed approach
provides a valuable contribution to the semiconductor IC
supply chain security field and has significant potential for
future research and development.
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